Tech Data

Viega ProPress® Venturi Insert Model 2911.5ZL

Description
Stagnant water can harbor dangerous pathogens in domestic water distribution systems. Reducing stagnation helps to maintain design temperature and residual disinfectant levels both of which reduce the propagation of waterborne pathogens, leading to a safer domestic water distribution system.

Features
- Designed to easily fit between Viega ProPress tees
- Flow direction indicated by arrow
- Designed to provide required spacing between tees
- Induces flow in seldom used fixtures
- EPA registered antimicrobial bronze alloy

Approvals
- NSF-61
- UP Code
- CSA

Compliant with:
- ASTM B-88
- ASHRAE Guideline 12
- USGBC

Typical Applications
- Mop sink
- Classroom sink
- Drinking fountains
- Janitor’s sink
- Break room sink

Zero lead identifies Viega products meeting the lead free requirements of NSF 61 through testing under NSF/ANSI 372 (0.25% or less maximum weighted average lead content.)

Viega’s Venturi insert can be used to induce flow in seldom used remote fixtures. Water flows along the path of least resistance. By manipulating pressure, a Venturi can alter the path of least resistance and reduce stagnation.

Part No. Size (in) A (in) A2 (in) L (in)
--- ---- ---- ---- ----
78810 1¼ x 1¼ 1.02 1.60 3.07
78811 1½ x 1½ 1.43 2.10 3.98
78812 2 x 2 1.58 2.45 4.48

This document is subject to updates. For the most current Viega technical literature please visit www.viega.us.

Viega products are designed to be installed by licensed and trained plumbing and mechanical professionals who are familiar with Viega products and their installation. Installation by non-professionals may void Viega LLC’s warranty.
Function

As water flows through the venturi, in accordance with Bernoulli’s principal, the water flows faster but at a reduced pressure. The local low pressure area at the outlet of the venturi induces flow through the loop. Water flows along the path of least resistance, therefore the Viega venturi insert does not have an equivalent length of tubing. The overall pressure reduction can be calculated by loop flow (from graph) and applying standard pipe friction loss tables or graphs to the loop.